Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Derya Ugur, ${ }^{\text {a }}$ Ulrich Flörke, ${ }^{\text {b* }}$ Nevzat Külcü ${ }^{\text {a }}$ and Hakan Arslan ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Arts and Science, Mersin University, Mersin, Turkey, and ${ }^{\mathbf{b}}$ Department Chemie, Fakultät für
Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany

Correspondence e-mail:
uf@chemie.uni-paderborn.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.032$
ωR factor $=0.090$
Data-to-parameter ratio $=16.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

3-[4-(3,3-Diethylthioureidocarbonoyl)-benzoyl]-1,1-diethylthiourea

The title compound, $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$, lies about a crystallographic inversion centre. The crystal packing shows intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions, the latter giving rise to the formation of dimers.

Comment

The title compound, (I), is another example of our newly synthesized thiourea derivatives which show interesting complexation capacity.

(I)

The centre of the molecule lies about a crystallographic inversion centre and thus the two thiourea moieties adopt an anti position. The planes of the benzoyl ring and the thiourea $\mathrm{N}_{2} \mathrm{CS}$ group are almost perpendicular with an angle of $89.0(1)^{\circ}$. The corresponding torsion angles are $\mathrm{N} 2-\mathrm{C} 6-$ $\mathrm{C} 7-\mathrm{C} 8=160.4(1)^{\circ}, \mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 5-\mathrm{S} 1=108.3(1)^{\circ}$ and $\mathrm{O} 1-$ $\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8=154.8(1)^{\circ}$. Prominent bond lengths are in the expected range, viz. $\mathrm{C} 5-\mathrm{S} 1=1.6660(13) \AA, \mathrm{C} 6-\mathrm{O} 1=$ $1.2185(16) \AA, \quad \mathrm{C} 5-\mathrm{N} 2=1.4173$ (16) \AA and $\mathrm{C} 5-\mathrm{N} 1=$ 1.3214 (17) \AA and compare well with the related distances of 1,1-diethyl-3-(4-methylbenzoyl)thiourea (Morales et al., 1997) or N-benzoyl- N^{\prime}-methyl- N^{\prime}-phenylthiourea (Shanmuga Sundara Raj et al., 1999). In the crystal structure (Fig. 2), molecules form dimers through strong intermolecular $\mathrm{N} 2-$ $\mathrm{H} 2 \cdots \mathrm{~S} 1(1-x,-y, 2-z)$ hydrogen bonds, with $\mathrm{H} \cdots \mathrm{S}=$ $2.37 \AA$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}=172^{\circ}$. An additional intermolecular interaction is $\mathrm{C} 2-\mathrm{H} 2 B \cdots \mathrm{O} 1\left(x-\frac{1}{2}, \quad \frac{1}{2}-y, \quad z-\frac{1}{2}\right)$, with $\mathrm{H} \cdots \mathrm{O}=2.33 \AA$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=152^{\circ}$. An intramolecular hydrogen bond is formed by $\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 2$, with $\mathrm{H} \cdots \mathrm{N}=$

Figure 1
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: $(A) 1-x,-y$, $3-z$.]

Figure 2
Packing diagram, viewed along [100]. Intermolecular hydrogen bonding is indicated by dashed lines.
$2.30 \AA$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}=105^{\circ}$. All these values are normalized for $\mathrm{N}-\mathrm{H}=1.03 \AA$ and $\mathrm{C}-\mathrm{H}=1.08 \AA$.

Experimental

A solution of 2.5 mmol terephthalyl dichloride in 125 ml acetone was added to 5 mmol KSCN in 25 ml of acetone. The mixture was stirred for 30 min at 313 K and then cooled to room temperature. Afterwards a solution of 5 mmol diethylamine in 25 ml acetone was added dropwise with stirring, which was continued for 2 h . The yellowish precipitate was recrystallized from dichloromethane-ethanol (1:1).

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$
$M_{r}=394.55$
Monoclinic, $P 2_{1} / n$
$a=6.7980$ (7) А
$b=15.2735(16) \AA$
$c=10.0275(10) \AA$
$\beta=109.168$ (1) ${ }^{\circ}$
$V=983.43(17) \AA^{3}$
$Z=2$
$D_{x}=1.332 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3822 reflections
$\theta=2.5-28.3^{\circ}$
$\mu=0.29 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Prism, colourless
$0.32 \times 0.25 \times 0.12 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\min }=0.890, T_{\max }=0.973$
5476 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.090$
$S=1.06$
1991 reflections
124 parameters
H atoms treated by a mixture of independent and constrained refinement

1991 independent reflections
1821 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-8 \rightarrow 8$
$k=-19 \rightarrow 17$
$l=-12 \rightarrow 12$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0466 P)^{2}\right. \\
& \quad+0.2868 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.29 \mathrm{e}^{\circ} \AA^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

S1-C5	$1.6660(13)$	N2-C6	$1.3606(17)$
O1-C6	$1.2185(16)$	N2-C5	$1.4173(16)$
N1-C5	$1.3214(17)$	C6-C7	$1.4915(17)$
C6-N2-C5	$119.59(10)$	O1-C6-N2	$122.06(12)$
N1-C5-N2	$115.88(11)$	O1-C6-C7	$121.05(12)$
N1-C5-S1	$125.10(10)$	N2-C6-C7	$116.85(11)$
N2-C5-S1	$119.02(9)$		

The H atom bonded to N 2 was refined freely. Other H atoms were placed at calculated positions, riding on their attached C atoms ($\mathrm{C}-$ $\mathrm{H}=0.95,0.98$ and $0.99 \AA$ for aromatic, CH_{2} and $\mathrm{CH}_{3} \mathrm{H}$ atoms, respectively), with isotropic displacement parameters $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$ or $1.5 U_{\mathrm{eq}}\left(\mathrm{CH}_{3}\right) . \mathrm{CH}_{3}$ groups were allowed to rotate, but not to tip.

Data collection: SMART (Bruker, 2002); cell refinement: SMART; data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Bruker (2002). SMART (Version 5.62), SAINT (Version 6.02), SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Morales, A. D., Garcia-Granda, S., Esteva, Y. R., Stevens, A. P. \& Crespo, G. A. A. (1997). Acta Cryst. C53, IUC9700019.

Shanmuga Sundara Raj, S., Puviarasan, K., Velmurugan, D., Jayanthi, G. \& Fun, H.-K. (1999). Acta Cryst. C55, 1318-1320.

